1. introduction research의 트렌드를 바꿔버린 혁명적인 가설로 한번 제기된 이후 후속논문이 지금까지도 나오고 있음 첫 network인 A를 parameter initialization을 하고 적당히 training을 하여 91%의 정확도를 얻었다고 하자. 이후 training된 network를 pruning하여 B를 얻었다고 한다. 이 때 B의 현재 parameter에서 mask로 가려지지 않은 부분을 A의 첫 initialization된 parameter로 reset한 다음에 정확히 A와 동일한 training방법을 사용하여 reset한 B를 training하면 91%에 가까운 정확도를 얻을 수 있는 그런 network B가 존재할 수 있다는 뜻이다. 이런 network B를 lott..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.