1. 선형변환으로 생각하는 행렬 행렬은 벡터공간에서 두 데이터 사이 연결관계를 나타내는 연산자로 생각할 수도 있다. (선형변환) 벡터 x에 행렬 A를 곱하여 다른 차원의 벡터 z로 변환시킴 기계학습의 선형모델들은 위와 같은 선형변환 행렬곱을 이용해서 데이터 x의 패턴(z)을 추출하거나 압축시킨다. 행렬 A의 연산을 거꾸로 되돌리는 행렬이 A의 역행렬 A의 역행렬은 A의 행과 열의 숫자가 같고 A의 행렬식이 0이 아니어야 존재한다 2. np.linalg.inv() numpy의 np.linalg.inv()는 역행렬이 존재하는 행렬의 역행렬을 구해준다 컴퓨터 연산 오차로 인해 자기 자신과 역행렬을 곱해보면 정확히 항등행렬이 나오진 않고 비슷한 값으로 나온다 X와 np.linalg...
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.