1. on-device AI model의 size는 점점 커지면서 그동안 model과는 비교할 수 없을 정도의 압도적인 괴물 model GPT-3가 등장했다 2021년 등장한 switch transformer은 이 GPT-3보다 9.14배나 더 큰 모델 GPT-3는 1번 training하는 것에만 한국 돈으로 약 50억 정확도를 80% > 90% > 99%로 10%정도 올리고 싶다고 50억을 쓰는게 물론 정확도를 높이는 것은 중요하지만 정말 맞는 일인가? 2. lightweight AI의 필요성 TinyML, on-device AI, Edge AI, Embedded AI, Edge intelligence 등으로 불림 소비자가 반응하는거에 빠르게 제공해줬으면(real time customer engagem..
1. 경량화란? switch transformer model은 거대하기로 유명한 GPT-3 parameter의 9.14배인 1600000000000개(1.6조) text description으로부터 image를 생성하는 DALL-E는 GPT-3 parameter의 0.068배인 12000000000개(120억) 성능을 높이려면 parameter 수를 늘려야한다고는 하지만 너무 심한 수준으로 끝을 모르고 증가하는 요즘 추세 거대기업이 아닌 일반 사람이 이런 모델을 돌리는 것은 사실상 불가능한 수준 무겁고 큰 performance가 좋은 모델에서 performance를 약간 손해보더라도 model size를 줄여 원래 모델보다 좋진 못하겠지만 어느정도 쓸 수는 있을 충분히 작은 모델을 만들고자하는 기술 경량..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.