1. hyperparameter 모델을 train할 때 사람이 골라주는 parameter learning rate, batch size, optimizer, …. 등등 어떤 hyperparameter를 사용할지에 따라 모델이 무슨 결과를 낼지는 해보지 않고서는 도저히 예측 불가능 그래서 hyperparameter search를 할 때는 model을 돌려서 결과를 보고나서 마음에 안드면 다른 hyperparameter를 고르고 그래 그런데 model 하나가 돌아갈 때 드는 cost는 거의 대부분 엄청나게 많아 단순히 돌아가는 것 뿐만 아니라 hyperparameter 변화로 모델이 그냥 이상해질 수도 있어서 그에 따른 비용도 엄청 남 그래서 hyperparameter search에는 parameter se..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.