1. introduction 정형 데이터를 위한 딥러닝 모델 테이블 형식의 데이터에 적합한 학습 아키텍처 전처리 과정이 필요없음 기존에는 feature 선택과 모델 학습 과정이 나누어져 있지만 TabNet은 한번에 가능하게 만듦 각 의사결정 단계에서 순차적인 attention으로 추론할 feature를 선택함 feature의 선택으로 어떠한 feature가 중요한 특징을 가지는지 설명도 가능함 label이 없는 데이터가 많을 때 self-supervised learning으로 representation에 효과적인 성능 향상을 보여줌 의사결정 각각 에서 왜 그 feature를 선택했는지 local interpretability와 모델이 만들어지면서 어떤 근거로 feature들이 선택되었는지 glo..
1. introduction 머신러닝 모델에서 직접 사용할 feature를 선택하는 과정 머신러닝 모델이 target변수를 예측하는데 유용한 feature와 유용하지 않은 feature를 구분해서 유용한 feature를 선택하는 과정 feature selection을 하면 모델의 복잡도를 낮춰주고 overfitting을 방지하며 속도를 높여주는 효과 그다지 도움이 되지 않는 noise feature를 제거하면 모델 성능이 오를 수도 있음 2. filter method model과는 상관없이 통계적인 측정방법으로 feature들의 상관관계를 알아내어 selection을 하는 방식 feature간의 상관계수를 이용하는 이 방식이 모델에 반드시 적합하다고 보기는 어려운데 계산속도 빠르고 간단하면서 featur..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.