1. GAN의 특징 인공지능에서 데이터 생성이라는 새로운 분야를 선보이며 등장 GAN의 목적은 갖고 있는 데이터를 모방해서 새로운 데이터를 만드는 것이며, 두 개의 네트워크가 서로 목표를 달성하기 위해 적대적으로 겨루는 구조 2. GAN의 구조 GAN을 처음 제안한 이안 굿펠로우는 GAN을 경찰과 위조지폐범의 관계로 설명하였다. GAN은 위 그림처럼 생성모델 Generator와 분류모델 Discriminator가 겨루는 네트워크로 generator는 위조지폐범, discriminator는 경찰에 비유된다. 위조지폐범의 목적은 경찰을 속이기 위해 최대한 진짜 지폐와 유사한 가짜 지폐를 생성하는 것이고 경찰은 위조지폐범이 만든 가짜 지폐와 진짜 지폐를 잘 분류하는 것을 목적으로 한다. 만약 위조지폐범의 수법..
1. Generative model 의미 자체로만 생각해보면 그럴듯한 이미지나 문장을 만드는 모형? 하지만 단순히 무언가를 만드는 것만 generative model은 아니다. 개 사진을 학습한 확률모형에서 새로운 개 사진을 sampling 하는 generation 이러한 모형을 implicit model이라 한다. 새로운 사진을 주었을 때 개랑 비슷할수록 높은 확률을 뽑아내는 density estimation, 이러한 모형을 explicit model이라 한다. density estimation은 이상점 탐지(anomaly detection)에 사용할 수 있다. 입력 이미지들에서 공통 부분(개의 경우 귀나 꼬리)을 배우는 feature learning 2. GAN(Generative Adversaria..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.