1. introduction input 이미지와 비슷한 사이즈의 출력을 가지는 모델? 지금 대부분 일부분 classification하는 모델의 기원 fully convolutional network의 기본적인 특징을 가지면서 낮은 layer의 feature와 높은 layer의 feature를 더욱 잘 융합하는 방법으로 skip connection 방법을 활용 2. 구조 contracting path와 expanding path의 결합으로 U자형처럼 생겼다 2-1) contracting path 3*3 convolution과 ReLU를 반복적으로 통과하고 maxpooling을 통과하여 해상도크기를 절반 낮추고 채널 수를 2배로 높이면서 receptive field를 높여간다 최종적으로 이미지의 전체적인 정..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.