1. R-CNN motivation 2012 AlexNet이 image classification에서 큰 성공을 거두면서 이것을 바로 object detection에 응용해보았다 AlexNet처럼 object detection의 전통적인 방법에 비해 압도적인 성능차이를 보이면서 혜성같이 등장 2. R-CNN 구조 먼저 주어진 이미지에서 selective search법으로 물체 후보 bounding box인 region proposal을 2000개 정도 구함 각 region proposal을 모두 잘라 patch로 만든다. pre-train한 CNN에 region proposal patch를 넣는다 CNN의 마지막 단은 fully connected layer인 SVM classifier를 붙여서 CNN을 ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.