1. 개념 소개 및 등장 배경 대규모 사전학습 언어 모델(LLM)은 방대한 지식을 파라미터에 내장하지만, 지식집약형 작업에서는 정확한 정보 접근과 조작에 한계가 있습니다ar5iv.org. 예를 들어 RAG(2020) 논문에서는 사전학습된 시퀀스-투-시퀀스(seq2seq) 모델(파라메트릭 메모리)과 위키피디아 지문을 색인한 밀집 검색(DPR) 모듈(비파라메트릭 메모리)을 결합하여, 입력 질문에 관련 문서를 검색한 후 이를 컨텍스트로 답변을 생성한다고 소개합니다ar5iv.orgarxiv.org. 이렇게 함으로써 기존 모델보다 질의응답 정확도를 크게 높이고, 생성한 답변의 구체성과 사실성도 개선할 수 있었습니다arxiv.orgar5iv.org. RAG는 특히 답변 근거 제시(provenance)와 지식 업데이..
1. 지식 사용법을 바꾼 LLM LLM이 사회에 큰 영향을 미치고 있는 이유는 하나의 언어 모델이 다양한 작업에서 뛰어난 능력을 보이기 때문 기존에는 언어에 대해 다루는 AI 분야인 자연어 처리 분야를 크게 언어를 이해하는 자연어 이해, 언어를 생성하는 자연어 생성의 두 분야로 접근했다. 또 각각의 영역에서 일부 좁은 영역의 작업을 해결하기 위해 별도의 모델을 개발하는 방식으로 문제에 접근했다. 하지만 LLM의 경우 언어 이해와 생성 능력이 모두 뛰어나다. 처음부터 자연어 생성을 위한 모델이므로 언어 생성 능력이 뛰어나고 모델의 크기가 커지면서 언어 추론 능력을 포함한 언어 이해 능력마저 크게 높아졌다. 지시 데이터셋으로 사용자의 요청에 응답하는 방식을 학습하면서 다양한 작업에 적절히 응답하는 능..
대규모 언어 모델(Large Language Model, LLM)의 발전은 자연어 처리(NLP) 작업에서 혁신적인 성과를 가져왔습니다. 특히, 검색-보강 생성(Retrieval-Augmented Generation, RAG)은 외부 지식 기반을 활용하여 모델의 문맥 이해력을 크게 향상시키는 방법으로 주목받아 왔습니다. RAG는 특정 작업에서 외부 데이터 소스를 동적으로 검색하고 이를 기반으로 문맥에 적합한 응답을 생성하는 시스템입니다. 이는 개방형 질문 응답(Open-Domain Question Answering)과 같은 지식 집약적 작업에서 탁월한 성능을 발휘해 왔습니다. 하지만 RAG에는 다음과 같은 한계가 있습니다:실시간 검색은 시스템의 지연(latency)을 초래하여 사용자 경험을 저하시킬 수 ..
LLM은 뛰어난 능력을 보여왔지만, 실제 사용을 위해서는 환각 현상이나 느린 지식 업데이트, 답변 투명성 부족 등 같은 문제를 해결해야합니다. RAG는 검색 - 증강 생성이라는 뜻으로 LLM에서 질문에 대한 답변이나 텍스트를 생성하기 전에, 광범위한 데이터베이스 집합에서 관련 정보를 검색하고 이러한 정보를 포함하여 자연스러운 답변을 생성하는 방법 LLM 내부적으로 훈련된 데이터가 시대에 뒤떨어져있을 수 있고, 특정 영역에 대해 지식이 부족할 수 있으며 응답의 투명성이 부족하다는 문제를 해결하는데 중점을 둔다 RAG는 답변의 정확도를 크게 향상시키고 지식 집약적인 작업에서 모델의 환각을 줄이는데 도움이 된다. 또한 사용자가 출처를 인용하여 답변의 정확성을 검증할 수도 있어 모델의 출력에 대한 신뢰..