1. optimizer는 무엇일까 loss는 gradient를 발생시키지만 gradient로부터 parameter를 업데이트시키는 것이 optimizer 업데이트하는 방식에 따라 다른 특징을 보이며 다른 성능을 나타낸다. 어떤 것을 선택하느냐에 따라 수렴속도나 수렴의 안정성에 차이가 있을 수 있어 신중하게 선택할 필요가 있다 2. learning rate learning rate는 계산된 gradient로부터 parameter를 얼마나 업데이트시킬지 결정하는 요소중에 하나로 학습 중에 고정시켜 사용할 수 있지만 그렇게 한다면, 고차원의 함수를 학습하고자 하는 딥러닝에서는 global minimum을 못찾을 가능성이 높다 반면 학습 중에 learning rate를 변화시킬 수 있으면 유연하게 global ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.