1. word embedding sequence data의 정보단위인 단어들을 특정한 공간 상의 한 점, 벡터로 표현하는 기법 써야 하는 이유는 위에서도 서술했지만 딥러닝 모델들이 수치를 다루니까, 단어 그대로 넣을 수 없어서 그렇다 word embedding은 그 자체로도 하나의 머신러닝 기술이다. 텍스트 데이터, 공간상 차원 등을 학습 데이터로 주고 학습 후 다른 단어의 최적의 embedding vector를 구한다. 모든 embedding 기법을 관통하는 핵심아이디어는 비슷한 의미를 가지는 단어들은 공간 상에서 비슷한 위치에 두고 그렇지 않은 단어들은 먼 거리에 두어 단어들의 의미 유사도를 반영한 벡터 표현을 제공하는 것이다. ‘cat’ 과 ‘kitty’는 의미상 비슷하므로 서로 비슷한 위치에 두고..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.