1. RNN 딥러닝이나 머신러닝 분야에서 텍스트는 단어가 연결된 문장 형태의 데이터를 일컫는다. 이처럼 작은 단위의 데이터가 연결되고 그 길이가 다양한 데이터의 형태를 시퀀스(sequence)라고 한다. 텍스트, 오디오, 시계열같은 데이터는 sequence이다. 역사적으로 이러한 시퀀스 데이터를 처리하기 위해 RNN이나 transformer의 2가지 아키텍처로 대표되는 다양한 모델을 사용했다. transformer가 개발되기 전에는 RNN을 활용해 텍스트를 생성했다. RNN은 위 그림같이 입력하는 텍스트를 순차적으로 처리해서 다음 단어를 예측한다. 특징으로는 모델이 하나의 잠재 상태 hidden state에 지금까지 입력 텍스트의 맥락을 압축한다는 점이다. 첫번째 입력인 '검은'이 모델을 통과하면 h..
대규모 언어 모델(LLM, Large Language Model)은 최근 몇 년간 비약적으로 발전하며 인공지능(AI) 연구에서 핵심적인 위치를 차지하고 있습니다. 특히 OpenAI, Anthropic, Google 등의 연구 기관이 개발한 최신 모델들은 언어 이해와 생성뿐만 아니라 수학, 과학, 코딩 등 다양한 논리적 추론 작업에서 탁월한 성능을 보여주고 있습니다. 하지만 기존 연구들은 대부분 사전 학습(pre-training)과 지도학습(supervised fine-tuning)을 기반으로 하고 있으며, 이는 막대한 데이터와 연산 자원이 필요하다는 한계를 가지고 있습니다. 최근 들어 **사후 훈련(post-training)**이 전체 훈련 과정에서 중요한 요소로 떠오르고 있습니다. 이는 추론 작업의..
1. ChatGPT의 빛과 어둠 1) 마이크로소프트 빌게이츠 "ChatGPT는 인터넷, PC정도로 중요한 발견이다" 2) 만들어진지 5일만에 100만 유저 달성 3) 이탈리아, ChatGPT의 개인정보 유출문제로 차단 4) 일론머스크, "멈출 수 없는 AI 레이스를 6개월만 쉬어가자" 5) 구글에 "ChatGPT"가 무엇인지 검색하면, 너무 많은 검색 결과를 주지만 ChatGPT한테 물어보면 검색 + 요약 + 설명을 깔끔하게 한번에 해 6) 하지만 아주 간단한 설명도 틀리게 말하는 경우가 많다 2. ChatGPT 이전의 시대 1) RNN - 자연어 처리 모델의 시초 1997년 개발 이후 2010년대까지 꾸준히 사용 한번에 한 단어만 모델에 넣을 수 있어서 병렬화가 불가능하여 학습시간이 매우 오래걸린다는 ..
1. 인공지능의 시대 1-1)ChatGPT 자연어 기반 대화형 AI 매우 뛰어난 성능으로 MBA 시험도 통과할 정도 https://www.nbcnews.com/tech/tech-news/chatgpt-passes-mba-exam-wharton-professor-rcna67036
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.