모델을 처음부터 만들어서 경량화 시켜 사용할 수 있지만 처음부터 만든다는 것이 쉬운일도 아니고 다른 domain에서 성능이 좋으리라는 보장도 없다 그러나 이미 검증된 ResNet, VGGNet, MobileNet, SqueezeNet 등등은 많은 사람들에게 여러 방면에서 검증이 되어 있어서 backbone으로 사용하기에 적절하다. 단점도 보완되어 발전하여 최신버전들로 계속 나오며 pretrain된 모델을 torchvision등에서 쉽게 가져와 사용할수도 있다 유명한 backbone들은 각각의 특징도 다양하다 dataset도 직접 모을 수 있지만 직접 모으는 것은 비용이 많이 든다. 쉽게 사용하라고 cifar10, cifar100, imagenet 등 공개되어 잘 알려진 dataset을 사용하..
0. computer vision은 왜 발전했을까 YOLO는 실시간으로 object detection을 가능하게 만들었다 길, 사람, 자동차 등을 segmentation하여 더욱 수준 높은 self driving을 구현하려고 노력하고 있다 이것은 어떻게 가능했을까? ImageNet이라는 대형 dataset이 등장한 것이 엄청난 영향력을 행사했다고 말할 수 있다 고도화된 알고리즘이나 모델이 아닌 약 1400만개의 image와 20000개의 category를 보유한 단순한 대용량의 대형 dataset 실생활에서 발견할 수 있는 다양한 variance들을 다 충족할 수 있는 엄청 큰 대형 dataset 그래서 획기적인 알고리즘 개발이 물론 중요하지만 ImageNet에 검증을 못하면 그런 알고리즘도 실생활에 쓸..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.