precision은 정답과는 무관하게 데이터들끼리 얼마나 같은 경향을 나타내는가 데이터들끼리 얼마나 멀리 분포하는지, 얼마나 좁게 분포하는지 variance에 관한 이야기 accuracy는 분포하는 경향과는 무관하게 데이터 하나하나가 정답을 맞췄는지 아닌지 bias에 관한 이야기 빨간 점이 정답과는 상관없이 비슷한 경향, 가깝게 뭉쳐있으면 precision이 높다고함 반면 accuracy는 정답인지 아닌지를 판단함 2번과 4번을 보면 정답에 있더라도 뭉쳐있지 않은 2번은 precision이 떨어지고 4번은 precision이 높음 3번과 4번을 보면 정답이 아니더라도 뭉쳐있는 둘은 precision이 높음
1. motivation 일반적으로 float32로 network 연산과정이 표현되나 그것보다 작은 크기의 데이터 타입인 float16 half precision이나 int8 fixed point로 mapping하여 연산을 수행하는 것 2. 예시 1번처럼 float32의 matrix들을 int8로 quantization mapping하여 표현을함 matrix를 계산한 결과가 2번임 2번을 다시 float32로 dequantization하면 3번이 됨 실제 quantization하지 않고 계산한 4번과 비교하면 어느정도 오차가 있는데 이것을 quantization error라고 부름 경험적으로 quantization error에 대해 robust하게 network가 잘 작동한다는 사실이 알려져서 보편..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.