1. 어떻게 하면 임의의 size에도 동작할 수 있을까? 기존 네트워크의 마지막 단인 fully connected layer 대신에 1*1 convolutional layer로 구성하여 가능하게 만들었다 기존 네트워크의 경우는 마지막이 fully connected layer로 linear layer니까 vector 형태로 나와서 class에 대한 확률분포를 구해주기에 적절했다면 fully convolutional network는 convolutional layer이므로 activation map을 출력하여 각 pixel에 속하는 classification 결과를 알 수 있게 해준다. 2. 1*1 convolution layer의 성질 기존 네트워크의 문제점은 output이 하나의 벡터로 나와 이미지 ma..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.