1. 키타마사 법(kitamasa method) 수열 an의 점화식을 이전의 몇개 항으로 정의한다면, 귀납적 정의, 재귀적 수열 등으로 부른다. an=k∑i=1wian−i 이런 형태로 정의되는 대표적인 수열은 피보나치 수열이다. an=an−1+an−2,w1=w2=1,k=2 이 피보나치 수열의 가장 빠른? 해법중 하나는 행렬을 이용하는 방법이다. https://deepdata.tistory.com/760 행렬을 이용한 피보나치 수열 문제의 해법 1. 피보나치 수열의 행렬 표현 피보나치 수열의 점화식은 다음과 같다. an+1=an+an−1 $a_{n} = a_{n} + ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.