precision은 정답과는 무관하게 데이터들끼리 얼마나 같은 경향을 나타내는가 데이터들끼리 얼마나 멀리 분포하는지, 얼마나 좁게 분포하는지 variance에 관한 이야기 accuracy는 분포하는 경향과는 무관하게 데이터 하나하나가 정답을 맞췄는지 아닌지 bias에 관한 이야기 빨간 점이 정답과는 상관없이 비슷한 경향, 가깝게 뭉쳐있으면 precision이 높다고함 반면 accuracy는 정답인지 아닌지를 판단함 2번과 4번을 보면 정답에 있더라도 뭉쳐있지 않은 2번은 precision이 떨어지고 4번은 precision이 높음 3번과 4번을 보면 정답이 아니더라도 뭉쳐있는 둘은 precision이 높음
1. 관계가 있는 것처럼 보이는 지표를 혼용하지 않는다 데이터 분석 현장에서는 측정하기 어려운 것을 정량화 할 때 '측정하기 쉬운' 지표가 우선적으로 사용되는 경향이 있다. 하지만 이렇게 도입된 지표가 측정하려는 것을 반영하고 있지 않는 경우가 많다. 예를 들어 연구자나 연구기관의 '연구 실적'을 측정할 때, 획득한 연구비의 액수가 고려되는(많으면 많을수록 좋다) 경우가 자주 있지만, 이것은 연구활동의 인풋으로 사용되는 금액이며, 연구의 아웃풋과는 원래 따로 생각해야하는 지표이다. 즉, 사용한 금액에 비례해서 어느 정도 성과를 이루었는지에 대해서는 의미가 있는 지표이다. 이렇게 무엇인가의 아웃풋을 측정하고 싶은데, 측정하기 쉬운 입력과 관계있는 다른 양으로 대체하는 오류는 자주 보이는 오류중 하나이다. ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.