모델에 학습을 계속 시켜서 train data에 대해 error를 0으로 만드는 것이 최적인가? 많은 경우 우리는 ‘generalization performance’가 좋은, train data가 아닌 다른 test data에 대해 잘 동작하는 모델을 만들고자 함 iteration이 커질 수록 train error는 계속 줄어들지만 test error는 어느 순간 커진다는 것이 알려짐 generalization performance가 좋다는 것은 이 모델의 train data의 성능이 다른 test data에서의 성능과 비슷하게 나온다는 것임 generalization performance가 좋은 모델이 반드시 좋은 모델인가? 사실 그렇지도 않다. generalization performance가 좋다고..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.