1. RNN의 기본구조 각 time step에 sequence data Xt와 전 step의 hidden state vector인 ht-1이 함께 입력으로 들어오고 현 step의 출력으로 ht를 구한다. 1-1) Rolled RNN Xt와 RNN에서 이전에 내놓은 ht-1돌면서 함께 들어가서 ht를 내놓는거 1-2) Unrolled RNN 위의 rolled version을 시간 순으로 풀어버리면 서로 다른 time step에서 들어오는 입력 처리할 때 동일한 parameter를 가지는 모듈 A를 반복적으로 사용하는 구조라서 Recurrent Neural Network 매 step마다 재귀적으로 모듈 A가 호출되어 거기서 나온 출력이 다음 step의 입력으로 들어간다 2. RNN의 예측값 그동안 보았던 N..
MLP의 경우 현재 시점의 정보만 가지고 입출력을 하므로 과거 정보를 다루기 어렵다. MLP는 오직 현재 시점의 입력만 사용한다 과거의 정보를 사용하고 싶다면? 이전 잠재변수 Ht−1로부터 정보를 받는 새로운 가중치 행렬을 만든다 위와 같은 경우 가중치 행렬이 1층 레이어에서 W(1)X,W(1)H, 2층 레이어에서 W(2)로 총 3개 있음 특히 이들 가중치 행렬은 시간 t와는 무관하게 모든 시점에서 공유된다 혹은 재귀적으로 입력이 반복된다고 해서 이렇게 표현하기도 한다 현재 입력 X에 대해 추가적으로 A에서 이전의 출력정보가 같이 들어가서 H로 나오는 구조 이런 재귀적 구조를 시간순으로 풀어버리면 오른쪽 그림처럼 입력이 매우 많은 fully connected..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.