1. 약수의 개수 자연수 n의 소인수분해가 n=px11px22...pxkk라고 한다면, n의 양의 약수의 개수는 d(n)=(x1+1)(x2+1)...(xk+1) n을 소인수분해하여, 소인수들의 지수 + 1의 곱의 합이 약수의 개수이다. 1-1) 간단한 증명 왜냐하면 n의 약수는 p1,p2,...,pk들의 곱으로 이루어져 있는데, 각각은 x1,x2,...,xk개씩 사용할 수 있다. 따라서 곱의 법칙에 의해 모든 경우의 수는 p1,p2,...,pk을 각각 (0,1,2,...,x1), (0,1,2,...,x2), ... , (0..
1. 문제 15712번: 등비수열 (acmicpc.net) 15712번: 등비수열 첫째 줄에 a, r, n, mod가 공백으로 구분되어 주어진다. a, r, n, mod는 모두 1보다 크거나 같고, 109보다 작거나 같은 자연수이다. www.acmicpc.net 초항이 a, 공비가 r, 항 수가 n인 등비수열의 합을 mod로 나눈 나머지를 구하는 간단한 문제 초항이 a이고 공비가 r이며 항 수가 n인 등비수열의 합은.. 공비 r이 1이 아니면, S=a×rn−1r−1 이라는 아주 쉬운 공식이 있고 이거에 따라 계산해서 mod로 나눈 나머지 구하면 되는거 아니냐 라고 쉽게 생각하면 이 문제는 풀수가 없다 a,r,n이 작으면 상관 없겠지만... 매우 크면 $r^{n..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.