convolution의 backpropagation 대충
1. convolution은 미분해도 여전히 convolution convolution을 미분하면 도함수와 convolution이 된다. 앞에 있는 f가 커널이라는 거 알지? 2. convolution의 직관적인 계산 그림 처음에는 w1,w2,w3가 x1,x2,x3에 만나서 o1 다음으로 한칸 옆으로 가서 x2,x3,x4를 만나서 o2 다음으로 한칸 옆으로 가서 x3,x4,x5를 만나서 o3 backpropagation을 위해 미분을 해보면 여전히 kernel과의 convolution이 된다는 것을 위에서 보였으므로 왜 x로 전달되느냐 oi의 미분이 xi이기 때문임 $\delta$는 loss를 o로 편미분한 값이다. loss를 w로 미분한것이 $\delta$와 x의 곱으로 나타남 convolution을 ..