Loading...
2021. 11. 20. 20:51

cross entropy loss(=log loss)에 대한 고찰

classification에서 가장 자주쓰는 cross entropy loss에 대해 생각해보면 binary classification의 경우 $$L(y) = -ylog(p)-(1-y)log(1-p)$$ $y$는 true value이고 $p$는 모델이 $y=1$로 예측할 확률이다. 이 cross entropy loss가 자주 쓰이지만 항상 좋은 선택일까?? 예측하고자 하는 데이터가 실제 정답이 y=1인 경우 loss를 계산하면 $$L(y=1)=-ylog(p)=-log(p)$$ 실제 정답이 y=0인 경우는 $$L(y=0)=-(1-y)log(1-p)=-log(1-p)$$ loss가 오직 true value를 예측할 확률에만 의존한다는 것이다. true value가 1일 때 loss의 그래프를 그림으로 나타냈..

loss function에 대하여

1. loss function은 도대체 무엇인가? 누군가가 loss function이 뭐냐고 물어보면 뭐라 대답해야할지 모르겠다. 나라면 당장 데이터의 실제 정답(ground truth)과 모델이 예측한 대답의 차이로 정의되는 함수라고 답할 것 같다 찾아보니까 대부분 이 말에 비슷한 것 같다 위키피디아의 첫줄 정의를 가지고 와봤다. 'In mathematical optimization and decision theory, a loss function or cost function is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" ass..