통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1473)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (494)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (12)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (2)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
GAN의 원리에 착안한 ELECTRA와 학습하지 않아도 응용을 잘하는 GPT-3

GAN의 원리에 착안한 ELECTRA와 학습하지 않아도 응용을 잘하는 GPT-3

1. GPT-3 1-1) introduction 특별한 구조 변경없이 GPT-2에 비해 비교할 수 없을 정도로 self-attention block을 늘려 parameter수를 압도적으로 늘렸다. 더욱 많은 데이터와 더욱 큰 batch size를 사용함 GPT-2와는 model size 격차가 엄청나다. 1-2) few shot learner GPT-3가 놀라운 점은 GPT-2가 보여주었던 zero shot learning의 가능성을 높은 수준으로 끌어올렸다는 점이다. pre-train한 GPT-3에게 여러가지 setting에서 번역 task를 수행시켰다. 여기서 translation 데이터는 전혀 학습하지 않았다. 먼저 task description으로 ‘Translate English to Frenc..

  • format_list_bulleted 딥러닝/NLP
  • · 2022. 10. 26.
  • textsms
BERT의 Transfer learning 활용 예시 알아보기

BERT의 Transfer learning 활용 예시 알아보기

1. BERT의 transfer learning pre-training으로 masked language modeling과 next sentence prediction을 동시에 수행한다. pre-training한 BERT는 down stream task를 위해 적절하게 초기화된 가중치를 갖고 이를 바탕으로 여러 task를 수행 2. sentence pair classification & single sentence classification sentence pair classification은 entailment prediction을 생각할 수 있을 것 같고 single sentence classification은 sentiment classification을 생각할 수 있을듯? sentence pair ..

  • format_list_bulleted 딥러닝/NLP
  • · 2022. 10. 25.
  • textsms
현대 NLP 모델의 근간이 되는 BERT의 기본적인 특징

현대 NLP 모델의 근간이 되는 BERT의 기본적인 특징

1. pre-trained model은 왜 의미있을까? pre-training과정에서 수행한 up-stream task의 data는 별도의 label이 필요하지 않은 데이터라는 것이 하나의 강점이다. ------------------------------------------------------------------------------------------------------------------------------- 다음 단어를 맞추는 것이 label이 없다고? GPT-1이 수행한 다음 단어를 예측하는 pre-training task는 input sequence와 output sequence가 동일한 task이다. 쉽게 말해 input sequence를 차례대로 읽어들여 input sequenc..

  • format_list_bulleted 딥러닝/NLP
  • · 2022. 10. 24.
  • textsms
괴물 언어모델 GPT-1에서 더 강력해진 GPT-2 파헤치기

괴물 언어모델 GPT-1에서 더 강력해진 GPT-2 파헤치기

1. 기본적인 특징 GPT-1에서 발전된 형태 ‘Just a really big transformer’ 특별한 구조 변경없이 transformer self attention block을 더욱 쌓아올려 모델 크기를 키웠다 pre-train task로 주어진 text의 다음 단어를 맞추는 language modeling “language model은 model의 구조나 parameter를 변경하지 않고도 zero shot setting에서 downstream task를 수행할 수 있다.” 정확히 말하면 훈련 시 다양한 스킬이나 패턴을 인식하는 방법을 학습함으로써 추론 시 downstream task에 빠르게 적응하도록 하는 방법이다. GPT-2에서는 이러한 방법을 "in-context learning" 방식..

  • format_list_bulleted 딥러닝/NLP
  • · 2022. 10. 21.
  • textsms
NLP의 transfer learning 기본 개념(zero shot, one shot, few shot) 익히기

NLP의 transfer learning 기본 개념(zero shot, one shot, few shot) 익히기

1. transfer learning transfer learning은 특정한 task를 학습한 모델을 다른 원하는 task에 이용하는 모델링 방식을 말한다. 이전에 미리 학습한(pre-training) 모델이 가지고 있는 지식이 원하는 task에서 유용하게 활용될 수 있을 것이라는 기대가 있어서 그렇다. 실제로 사람도 이미 가지고 있는 지식을 바탕으로 전혀 모르는 새로운 학습에 경험이나 노하우 등을 유용하게 써먹잖아 pre-train된 모델을 그대로 사용하거나 목적 task를 위한 작은 layer를 추가하여 학습하는 방식이 바로 transfer learning이다. 2. pre-training for up-stream task pre-training 과정에서 수행하는 task를 특별히 up-stream..

  • format_list_bulleted 딥러닝/NLP
  • · 2022. 10. 20.
  • textsms
NLP의 최신 트렌드 - GPT-1 파헤치기

NLP의 최신 트렌드 - GPT-1 파헤치기

1. NLP의 최신 트렌드 transformer와 self-attention block은 NLP분야에서 범용적인 encoder,decoder로 역할을 수행하며 좋은 성능을 보였다. 처음 제안된 transformer의 self-attention block은 6개였는데 이제는 12개,24개,... 그 이상으로 더욱 쌓아올려 model을 구성한다. 이렇게 쌓은 모델을 self-supervised learning라는 framework하에 대규모의 train data로 pre-train하여 다양한 NLP task등에 transfer learning로 fine-tuning하는 형태로 활용하는 거대한 모형 BERT,GPT,ELECTRA,ALBERT 등이 등장했다. 이런 거대한 모형의 self-supervised le..

  • format_list_bulleted 딥러닝/NLP
  • · 2022. 6. 28.
  • textsms
  • navigate_before
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • ···
  • 10
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1473)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (494)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (12)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (2)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #프로그래밍
  • #NLP
  • #딥러닝
  • #python
  • #정수론
  • #백준
  • #코딩테스트
  • #알고리즘
  • #머신러닝
  • #파이썬
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바